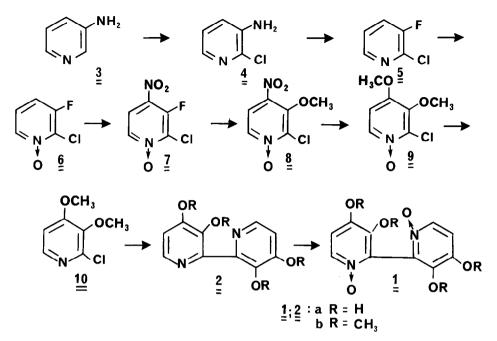
SYNTHESIS OF ORELLANINE, THE LETHAL POISON OF A TOADSTOOL


Eckehard V. Dehmlow* and Hans-Joachim Schulz Fakultät für Chemie, Universität Bielefeld, D-4800 Bielefeld 1, Germany

<u>Abstract</u>: A ten step synthesis of the structure of orellanine, 3, 3', 4, 4'hydroxy-2,2'-bipyridyl-bis-N-oxide ($\underline{1}\underline{a}$), is described which proves the identity of the natural product.

The mushroom <u>Cortinarius orellanus Fries</u> was considered edible until 1952, when a mass poisoning of 135 persons (including 19 deaths) in Poland caused attention. Analysis of the incident was complicated by the latency period of 3 to 20 days between consumption of the toadstools and the appearance of symptoms¹. The first separation of the poisonous principle, named orellanine, led to a mixture apparently². Antkowiak and Gessner³ isolated a single compound to which they assign the structure of 3,3',4,4'-tetrahydroxy-2,2'bipyridyl-bis-N-oxide (<u>1a</u>). Decomposition of <u>1a</u> on heating gives oxygen⁴ and non-toxic orelline (<u>2a</u>). Moser et al. seem to have isolated <u>1a</u> as well⁵. Although the nephrotoxicity of this compound and other bipyridyls is well established⁶, recent work from another group implies that the <u>C. orellanus</u> toxins might be peptides⁷. In view of the unusual structure, a synthesis of <u>1a</u> seemed desirable.

Several synthetic routes towards <u>1b</u> were attempted in vain. All experiments were futile in particular which used substituted bipyridyls as early intermediates. Ultimately, the process shown in the scheme was developed. The chlorination <u>3</u> \longrightarrow <u>4</u> (15% H₂O₂ in concentrated HCl) was executed in 82% yield⁸. 38% <u>5</u> was obtained from <u>4</u> in a Schiemann reaction⁹. Oxidation of <u>5</u> with acetic anhydride/30% H₂O₂ gave 54% of <u>6</u>¹⁰. Nitration (100% HNO₃/100% H₂SO₄ containing 10% SO₃) of <u>6</u> led 42% <u>7</u> and 2% of 2-chloro-3-fluoro-6-nitro-

4903

pyridine-N-oxide (<u>11</u>). The structure of $\underline{7}$ as a 4-nitro compound becomes apparent from the NMR signals of the isomers $\underline{7}$ and <u>11</u> (Table 1). Selective substitution by a molar amount of methoxide in methanol at room temperature gave <u>8</u> (84%), whereas the action of two equivalents of methoxide yielded <u>9</u> which could also be obtained from <u>8</u> in a stepwise manner. The attempted isolation of <u>9</u> resulted in a violent decomposition sometimes, and therefore the immediate PCl₃ reduction of raw <u>9</u> to <u>10</u> is preferred (62% from <u>7</u>).

The bipyridyl coupling was achieved with the help of the nickel(0)-triphenylphosphine complex using the method of Tiecco et al.¹¹. <u>10</u> was added to the freshly prepared complex in DMF and stirred at 50°C for 4 hours. <u>2b</u> was obtained in 25% yield. It exhibits the expected MS and NMR signals¹². Oxidation of <u>2b</u> (Ac_2O/H_2O_2) gave <u>1b</u> in 41% yield. Interestingly, the mass spectrum of <u>1b</u>¹³ shows the loss of the two oxygen atoms in seperate steps so that the [1.5] oxygen shift mechanism proposed for <u>1a</u>⁴ cannot apply here.

Refluxing $\underline{2b}$ or $\underline{1b}$ in 33% HBr/HOAc for 4 h yielded 46% $\underline{2a}$ or ca. 30% $\underline{1a}$, respectively. Comparison of physical data of these compounds with the published ones (Table 2) established the identity of the natural product ¹⁴.

Constant support by Fonds der Chemischen Industrie is acknowledged.

Comp.	m.p.	Signals (∆)					Coupling Constants (Hz)					
	[°C]	H – 4	H - 5	H-6	001	Н ₃	^J 4,5	^J 4,6	^J 5,6	J _{F,4}	J _{F,5}	J _{F,6}
<u>1</u> <u>b</u>	235-6 (dec.)		7.24 (d)	8.13 (d)	3.70	3.93		—	7.3	_		
≧₽	186-7		7.15 (d)	8.23 (d)	3.58	3.92			5.5			
ē	145-7	7.52 (ddd)	7.46 (d"t")	8.37 (dt)		_	8.8	1.6	6.4	7.0	6.4	1.6
<u>7</u>	176-8		8.01 (dd)	8.27 (dd)	_	—		<u> </u>	7.5		8.0	1.8
<u>11</u>	95-6	7.27 (dd)	7.72 (dd)			—	9.3		—	6.0	6.0	
8	104-5		7.82 (d)	8.21 (d)	4.11				7.4	—	_	
9	99-100	—	6.76 (d)	8.17 (d)	3.93	3.95			7.5	—	—	
<u>1</u> 0_	43-4	—	6.81 (d)	8.04 (d)	3.89	3.93		—	5.6			
Table Consta	2. Compa ant Sy	rison o nthetic		ants for Lit. ³			nd Na hetic		<u>1a</u> a:		it. ³	
	ant Sy	nthetio		Lit.		Synt slow		<u>1a</u> •• > 150	o°C	L		
Consta 	ant Sy sl	nthetio	c <u>2</u> a p. > 320°C	Lit.	3	Synt slow explo	hetic decomp	<u>1a</u> •• > 150 • 267°C	o°C	L. S	it. ³	82,35
Consta m.p. UV (MeC	ant Sy sl MH) 2' InNaOH) 2'	nthetic .cw decom 9, 343, 7, 242,	2 <u>2</u> <u>a</u> pp. > 320°C 390 258	Lit. 219, 344 243, 260	3 , 390), 285	Synt slow explo 218, 221	decomp bsively	<u>1</u> a → > 150 267°C	0 0	L. S 219,	it. ³	
Consta m.p. UV (MeC (0.1	ant Sy Sl MH) 2 ⁴ InNaOH) 2 ⁴ 28	ow decom	2 <u>2</u> a mp. > 320°C 390 258 406	Lit. 219, 344	3 7, 390 9, 285	Synt slow explo 218, 221 317	decomposively	<u>1a</u> • > 150 • 267°C • 79, 35 • 34, 29	^о С О 2	L. s 219, 234,	it. ³ Tame 248, 2	19
Consta m.p. UV (MeC (0.1	ant Sy Sl MH) 2 ⁴ InNaOH) 2 ⁴ 28	nthetic .cw decom 9, 343, 17, 242, 32, 384,	2 <u>2</u> a mp. > 320°C 390 258 406	Lit. 219, 344 243, 260 385, 407	, 390), 285), 305	Synt slow explo 218, 221 317 205 290	decomposively 248, 2 (sh), 2	<u>1</u> a 267°C 79, 35 34, 29 13, 26	0 2 5	L. 219, 234, 213,	it. ³ Tame 248, 2 292, 3	19 90
Consta m.p. UV (MeC (0.1 (0.1	ant Sy Sl DH) 21 DNAOH) 21 28 DNHCl) 21	nthetic cow decom 9, 343, 7, 242, 32, 384, 13, 248, 220	2 <u>2</u> a mp. > 320°C 390 258 406	Lit. 219, 344 243, 260 385, 407 213, 250	3 5, 390 5, 285 5, 305	Synt slow explo 218, 221 317 205 290	decomposively 248, 2 (sh), 2 (sh), 2	<u>1</u> a 267°C 79, 35 34, 29 13, 26	0 2 5	L. 219, 234, 213, (EI)	it. ³ ame 248, 2 292, 3 265, 2	19 90 36 ,22 0

Table 1. Melting Points and ¹H NMR Data of New Compounds

*a) very dependent on concentration, H₂O, and acid traces, 7.13, 8.23 (J=7.0) (neutral), 7.33, 8.37 (J=7.0) presence of a drop aq. HCl

References and Footnotes

- ¹ Compendia of medical observations: R. Flammer, <u>Schweiz</u>. <u>Med</u>. <u>Wochenschr</u>.
 <u>112</u>, 1181 (1982); T. Schumacher and K. Høiland, <u>Arch. Toxicol</u>. <u>53</u>, 87 (1983).
 ² S. Grzymala, Bull. Soc. Mycol. France <u>78</u>, 394 (1962).
- $b: dizymaid, \underline{bdii}, \underline{bde}, \underline{mycdi}, \underline{11dice}, \underline{10}, 554 (1902).$
- ³ W.Z. Antkowiak and P. Gessner, <u>Bull. Acad. Pol. Sci. Ser. Chim. 23</u>, 729 (1975); <u>Tetrahedron Letters</u> 1931 (1979).
- ⁴ The two O-atoms are lost stepwise. A special mechanism for this process was proposed (W.Z. Antkowiak, W.P. Gessner, <u>Tetrahedron Letters</u> 4045 (1984)). A concerted electrocyclic deoxygenation of bipyridyl-N-oxides could not be found (D. Wenkert and R.B. Woodward, <u>J. Org. Chem. 48</u>, 283 (1983)).
- ⁵ M. Moser, H. Kürnsteiner, R. Aberham, and R. Gamper, Atti del Convegno Intern., Centro Studi per la Flora Mediterranea, Val di Taro, Italy, 14 - 15 May 1983, p.33; H. Kürnsteiner and M. Moser, <u>Mycopathologia 74</u>, 65 (1981); private communication Prof. Moser 1985.
- ⁶ H. Prast, Congress abstract⁵, p. 51; G. Gstraunthaler and H. Prast, <u>Sydowia</u> <u>34</u>, 53 (1983); C. Heufler, G. Falmayer, and H. Prast, <u>Hoppe-Seyler's Z</u>. <u>Physiol. Chem. 365</u>, 921 (1984).
- ⁷ I.R. Tebbett and B. Caddy, <u>Experientia</u> <u>40</u>, 441 (1984); B. Caddy, C.B.M. Kidd, J. Robertson, I.R. Tebbett, W.J. Tistone, and R. Watling, <u>Experien-</u> <u>tia</u> <u>38</u>, 1439 (1982).
- ⁸ O.v. Schickh, A. Binz, and A. Schulz, <u>Ber. Dt. Chem. Ges. 69B</u>, 2593 (1936).
 ⁹ W.J. Link, R.F. Borne, and F.L. Setliff, <u>J. Heterocycl. Chem.</u> <u>4</u>, 641 (1967).
 ¹⁰ Correct C,H,N analyses were obtained for all new compounds. They were further characterized by IR- and MS-spectroscopy.
- ¹¹ M. Tiecco, L. Testaferri, M. Tingoli, D. Chianelli, and M. Montanucci, Synth. 736 (1984).
- ¹² MS (EI): 277 (M⁺+H), 261, 245, 231. UV (CH₃OH) 269, 216 nm.
- ¹³ MS (CI): 309 (M⁺+H), 293 [(M⁺+H)-O], 277 [(M⁺+H)-20]; UV (CH₃OH): 311 (sh), 274, 226, 213 (sh).
- ¹⁴ Diazomethane treatment is known to give one orelline and three orellanine tetramethyl derivatives³. Unfortunately, Antkowiak and Gessner give no data so that a comparison is not possible at the stages of <u>2b</u> and <u>1b</u>. (Received in Germany 17 June 1985)